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Abstract
In the realm of cognitive agents, including both human users and AI systems, explainable clustering

algorithms have gained prominence. These algorithms o�er enhanced transparency, making clustering

results comprehensible to users and aiding AI systems in decision-making. They also facilitate knowledge

discovery by revealing cluster characteristics, reducing cognitive load for users, and playing a vital role

in ethical and bias mitigation. This paper introduces an innovative extension of the existing PSyKE

framework, designed to support explainable clustering techniques and, thus, to augment cognitive

agent capabilities. State-of-the-art review, experiment �ndings, and a synthesis of key insights are also

provided.
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1. Introduction

In the realm of cognitive agents, which encompass both human users and arti�cial intelligence

(AI) systems, the advent of explainable clustering algorithms has gained signi�cant attention [1].

These algorithms o�er several advantages that amplify the e�cacy and transparency of clus-

tering processes across diverse domains [2]. This paper explores the bene�ts of explainable

clustering algorithms to augment the capabilities of cognitive agents.

At the forefront of these advantages there is the enhanced transparency provided by ex-

plainable clustering algorithms [3]. They have the capability to yield clustering results in a

comprehensible and interpretable manner, ensuring that both human users and AI systems can

discern the rationale behind the grouping of data points. This transparency, we argue, is an

indispensable element for fostering trust in AI systems and empowering human users to engage

in the validation and comprehension of the clustering process. Moreover, explainable cluster-

ing algorithms o�er improved decision support, which is invaluable in the realm of cognitive

agents [4]. These agents often rely on clustering outcomes to make informed decisions or to
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provide recommendations. The inherent transparency in explainable clustering assists these

agents in deciphering the intricate structures within data, thereby facilitating more informed

and robust decision-making processes. Beyond their utility in decision-making, explainable

clustering algorithms serve as an instrument for e�ective knowledge discovery [5]. Clustering

serves as a foundational step in knowledge discovery, and explainable clustering algorithms take

this a step further. Not only do they create clusters, but they also unravel the de�ning charac-

teristics that distinguish each cluster. This capacity empowers cognitive agents to gain insights

into complex data sets, enriching the pool of knowledge they can leverage. Further, explainable

clustering algorithms also contribute to reduce cognitive load on human users, particularly

in the face of complex tasks, such as clustering high-dimensional data sets [6]. By presenting

clustering results in a more digestible and comprehensible manner, these algorithms alleviate

the cognitive burden placed on human users, promoting e�ciency and accuracy. Perhaps most

signi�cantly, explainable clustering plays a pivotal role in ethical and bias mitigation [3]. It

empowers cognitive agents to identify and rectify potential biases or ethical concerns within

the data or the clustering process itself. By enabling the explainability of clustering decisions,

explainable clustering algorithms support the pursuit of fairness and equity in data-driven

processes.

In light of these considerations, this paper introduces a groundbreaking extension of the

PSyKE framework tailored to enhance the capabilities of cognitive agents via explainable

clustering support. The paper is organised as follows. A state-of-the-art review is �rst provided

(Section 2), followed by our proposal, the explainable clustering support integrated within

the PSyKE Framework (Section 3). We then delve into the �ndings of experiments conducted

(Section 4) and conclude with a synthesis of key insights derived from our exploration.

2. Related Works

2.1. Explainable Clustering

Several explainable clustering techniques have been developed in the last decades and it is

possible to �nd in the literature their practical application in critical areas, also to tackle complex

tasks involving image data sets and medical time series [7, 8, 9].

A subset of the proposed algorithms are based on tree-based clustering according to di�erent

strategies that may be classi�ed as top-down or bottom-up [10, 11, 12, 13, 14, 15, 16]. Explainable

clustering methods adhering to the top-down approach usually start by building the tree root

node, associated with the whole training data set. Successively, the root node’s data are

partitioned into disjoint subsets associated with the child nodes and this is recursively repeated

to grow the clustering tree. The tree expansion ends according to a stopping criterion that may

consider the predictive performance of the clustering at a given depth and/or the availability of a

�xed, minimum amount of training samples in deep nodes. Each internal node may correspond

to a constraint on an individual input feature or a set of constraints involving all of them. A

common characteristic of top-down strategies is the input feature space partitioning via cutting

hyperplanes that are perpendicular to the data dimensions.

Di�erent approaches are the explanation of clusters via rectangular input space partition-

ing [17], or the description of clusters in terms of centroids and distances [18]. The former



may achieve a good human-interpretability extent, since it describes clusters based upon only 2

interval inclusion constraints. However, the algorithm may combine multiple input attributes

and thus consider preconditions on new, composite features. This behaviour may constitute a

hindering factor for human interpretability.

2.1.1. CLASSIX

The CLASSIX (contrived acronym de�ned by the authors as “CLustering by Aggregation with

Sorting-based Indexing” and the letter “X” for “eXplainability”) algorithm [18] has been recently

proposed as a novel 2-phase explainable clustering procedure. It is presented as a technique

denoted by small computational time requirements.

The �rst phase of CLASSIX is a greedy aggregation aimed at creating groups of training

instances having “small” distances from each other. The distance may be tuned by users through

a dedicated input parameter. It is worth noting that a preceding sorting step is required to

perform the aggregation.

The second phase consists of merging the groups into de�nitive clusters. Two merging

strategies are supported by CLASSIX, namely, density- or distance-based (see [18] for further

details).

CLASSIX requires two used-de�ned parameters de�ning (i) a lower-bound for the accepted

cluster size, intended as the number of samples, and (ii) an upper-bound for the distance between

training instances assigned to the same group (with reference to the aggregation phase).

The CLASSIX technique may provide explanations locally or globally. Global explanations

are built based on the coordinates of the initial points for each individual group created at the

end of the �rst phase of the procedure. On the other hand, two kinds of local explanations are

supported. It is possible to obtain the reason behind the cluster assignment corresponding to an

individual instance or CLASSIX may be queried to explain why two instances are assigned to

the same cluster or not. Local explanations are provided by listing the operations performed

during CLASSIX’s merging phase.

2.1.2. IMM

The IMM (Iterative Mistake Minimization) clustering procedure [13] is presented by the authors

as an accurate, e�cient, and interpretable method based on the induction of decision trees.

The output decision trees are binary and their internal nodes are associated with training data

partitions. Splits corresponding to internal nodes always involve individual input attributes.

The IMM algorithm requires growing a tree having k leaves to identify as many clusters. The

tree induction considers a set of desiderata, e.g., keeping the tree size as small as possible and

minimising the cluster’s fragmentation while deepening the tree. Fragmentation is intended as

spreading instances belonging to a single cluster over multiple subtrees.

Explanations for individual cluster assignments are provided by describing the complete

paths starting from the tree root through the leaves associated with those assignments. It is

also possible to obtain global explanations for the clustering by listing all the existing paths to

the di�erent leaves.



As for the tree growth complexity, it is worth noting that if IMM identi�es k clusters the

corresponding tree has a depth equal to k − 1 in the worst case (unbalanced tree). As a result,

any clustering assignment is described in terms of the conjunction of at most k − 1 constraints

on individual input features.

2.1.3. ExACT and CREAM

ExACT [15] and CREAM [14] are tree-based explainable clustering techniques achieving human-

interpretability via hypercubic approximation of the identi�ed clusters. Both algorithms induce

a binary tree to partition the input feature space and each internal node of the tree corresponds

to a hypercube-inclusion constraint.

Trees are built recursively, according to a top-down strategy, and each node of the tree

corresponds to an input feature space subregion. The tree root is associated with the surrounding

cube, i.e., the minimal cube enclosing all the training instances. During a single recursive

iteration an internal node is marked with a hypercube-inclusion constraint and therefore its

two child nodes represent the hypercubic partition of the input feature space denoted by the

constraint on one side and the complementary subregion on the other side.

Both ExACT and CREAM exploit underlying instances of Gaussian mixture models [19]

to identify relevant clusters of data and instances of DBSCAN [20] to remove outliers from

the identi�ed clusters. Clusters without outliers are then approximated via hypercubes. The

selection of the best splits to be associated with internal nodes follows di�erent approaches.

ExACT tries to perform a greedy minimisation of the cluster fragmentation, whereas CREAM

opts for a greedy maximisation of the estimated predictive performance corresponding to the

available splits. The two approaches are thus based on the selection of best local alternatives,

without any guarantees of absolute optimality. The di�erences between ExACT and CREAM are

depicted in Figure 1 for arti�cial data sets having concentric [15] or overlapping [14] clusters.

Three user-de�ned parameters are required by ExACT and CREAM, namely: (i) a maximum

tree depth; (ii) a predictive error threshold; and (iii) an upper-bound for the number of clusters

identi�able via Gaussian mixture models. Depth and error threshold may be automatically

tuned with the OrCHiD procedure [14].

It is worth noting that besides mere clustering tasks ExACT and CREAM may also be applied

to perform explainable classi�cation and regression, given that they are able to associate to

each cluster one amongst the following outputs: cluster ids, class labels, constant values and

linear combinations of the input features [21, 22].

2.2. The PSyKE Framework

PSyKE is a general-purpose Python software library mainly dedicated to symbolic knowledge

extraction [23, 24], but also providing a suite of tools for data pre-processing, manipulation and

visualisation as well as for machine learning tasks. It o�ers a uni�ed interface for several extrac-

tion techniques belonging to the pedagogical paradigm and it supports interoperability with

other widely adopted Python packages, as numpy, pandas and sklearn [25]. Interoperability

with Semantic Web tools is also provided [26]. Knowledge-extraction techniques supported by

PSyKE can be applied to any kind of supervised machine learning model without limitations
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(a) Data set.
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(b) Data set.
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(c) ExACT’s approximation.
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(d) CREAM’s approximation.

(e) Binary tree induced by ExACT. (f) Binary tree induced by CREAM.

Figure 1: Comparison of the partitioning performed by ExACT and CREAM on artificial data sets

having concentric clusters [15] or superposing clusters [14].



about the nature of the task at hand, i.e., classi�cation as well as regression.

At the time of writing PSyKE includes implementations of the following knowledge-extraction

procedures: Rule-extraction-as-learning (REAL) [27], Trepan [28], Cart [29], Iter [30],

GridEx [31], GridREx [32] and CReEPy [33]. These techniques provide global explanations

for the predictions obtained via opaque machine learning models in the form of a human-

interpretable Prolog theory. Therefore, PSyKE may be exploited as a tool to achieve trustworthy

arti�cial intelligence [34].

3. Explainable Clustering Support in the PSyKE Framework

In order to support explainable clustering within the PSyKE framework, the structure of the

main project package (the psyke package) has been totally redesigned. The new structure of

the software library, depicted in Figure 2, is e�ective from version 0.51. Only the psyke package

is shown in the �gure, since it is the main subject of the presented framework extension.

3.1. The EvaluableModel Interface

The current design of PSyKE’s main package is based on the notion of EvaluableModel, an

interface representing any predictive model that may be evaluated via some scoring metric

(e.g., a machine learning predictor, an interpretable model obtained via knowledge extraction, a

clustering technique). Evaluable models in PSyKE come along with information about the pre-

processing routines applied to the data sets, i.e., the parameters applied to perform normalisation

and/or discretisation. Any evaluable model should be able to provide predictions and its

predictive performance should be assessable through an adequate scoring function.

Accordingly, the interface exposes two methods. The predict method is abstract and

accepts a dataframe (i.e., a pandas dataframe, but also numpy arrays are accepted) and returns

the corresponding predictions. The de�nition of this method depends on the speci�c model.

Therefore, it must be de�ned within other classes implementing the EvaluableModel interface.

The score method accepts a dataframe and a scoring function and then returns the scoring

function evaluated on the instances of that dataframe. The interface provides scoring functions

for classi�cation (e.g., classi�cation accuracy, F1 score and confusion matrices), regression (e.g.,

mean absolute/squared error and R2 score), and clustering (e.g., adjusted Rand index, adjusted

mutual information, V-measure and Fowlkes-Mallows score).

The EvaluableModel interface is extended by three other interfaces, namely:

HyperCubePredictor describing any evaluable model whose predictions are based on a

hypercubic partitioning of the input feature space. The set of hypercubes is an attribute

de�ned by the interface. It also de�nes the inherited predict method;

Extractor representing any evaluable model providing interpretable predictions by highlight-

ing symbolic input/output relationships extracted from an opaque predictor. Relationships

are learned via the extract method, requiring as input parameters a training dataframe

and an opaque predictor (e.g., a machine learning model from the sklearn library or any

1Code available at https://github.com/psykei/psyke-python

https://github.com/psykei/psyke-python


Figure 2: UML class diagram for the psyke package of PSyKE version 0.5.



other object having a predict method). The extract method is abstract since it di�ers

based on the individual extraction techniques and thus it has to be de�ned by classes

extending the Extractor interface;

Clustering resuming the properties of any explainable clustering technique that may be

�tted on a dataframe and explained via human-interpretable descriptions of the identi�ed

clusters. Accordingly, it exposes two abstract methods for these purposes, to be de�ned

by inheriting classes.

3.2. The extraction Package

The psyke package of the PSyKE library encloses the extraction sub-package, dedicated

to symbolic knowledge extraction from opaque machine learning models. The sub-package

contains an interface representing a generic pedagogical knowledge-extraction algorithm

(the PedagogicalExtractor interface, extending the Extractor interface). Three peda-

gogical knowledge-extraction algorithms (namely, REAL, Trepan and Cart) implement the

PedagogicalExtractor interface. Each algorithm is enclosed in a dedicated sub-package and

the corresponding main class de�nes the abstract methods predict and extract inherited

from EvaluableModel and Extractor, respectively.

The extraction sub-package contains an inner sub-package named hypercubic, dedicated

to hypercube-based knowledge extractors. It de�nes the HyperCubeExtractor interface,

representing a generic extractor of this kind and extending both the HyperCubePredictor and

the PedagogicalExtractor interfaces. HyperCubeExtractor is realised by four di�erent

classes implementing as many knowledge extractors (i.e., GridEx, GridREx, Iter and CReEPy),

each one encapsulated in an individual package. Only the extract method is de�ned by these

classes, given that the predict method is common and already de�ned and inherited from

HyperCubePredictor.

The features of knowledge-extraction algorithms implemented in PSyKE are listed in Table 1,

with particular focus on the translucency of the extractors, the supported machine learning task,

the kind of accepted input features and provided outputs, the shape of the extracted knowledge

and the interpretability extent achieved by the algorithms.

3.3. The clustering Package

The explainable clustering techniques o�ered by PSyKE (ExACT and CREAM) are con-

tained in the clustering package and realise the HyperCubeClustering interface, given

that they are both clustering procedures based on hypercubic partitioning of the input fea-

ture space. The HyperCubeClustering interface, in turn, extends the aforementioned

HyperCubePredictor and Clustering interfaces. As a result, only the fit and explain

methods need to be de�ned within the classes implementing explainable clustering techniques.

Since CREAM is an extension of the ExACT algorithm, the corresponding classes follow an

adequate hierarchy. Nonetheless, each algorithm is encapsulated in an individual package.

The features of the explainable clustering techniques supported by PSyKE are resumed in

Table 1.



Table 1

Summary of the knowledge-extraction and explainable clustering algorithms supported by PSyKE

version 0.5. Translucency is not a property of explainable clustering techniques; it is thus reported only

for knowledge extractors.

Knowledge extraction Clustering

REAL Trepan Cart Iter GridEx GridREx CReEPy ExACT CREAM

Ref. paper [27] [28] [29] [30] [31] [32] [33] [15] [14]

Trans.:

Pedagogical × × × × × × ×

Decomp.

Task:

Classification × × × × × × × × ×

Regression × × × × × × ×

Clustering × ×

Input feat.:

Binary × × × ×
*

×
*

×
*

×
*

×
*

×
*

Discrete ×
‡

×
‡

× ×
†

×
†

×
†

×
†

×
†

×
†

Continuous × × × × × × ×

Output:

String label × × × × × × × × ×

Constant × × × × × × ×

Linear eq. × × × × × ×

Cluster id × ×

Knowledge:

Rule list × × × ×

Decision tree ×
S

×
S

×
S

×
S

×
S

Interpret.:

Global × × × × × × × × ×

Local ×
◇

×
◇

×
◇

×
◇

×
◇

×
◇

×
◇

×
◇

×
◇

* Only if binary values are encoded as numbers, e.g., 0 and 1
‡ Only if discrete values are binarised, e.g., via one-hot encoding
† Only if discrete values are numeric
S Decision trees may be linearised into an ordered list of rules
◇ Local interpretability may be achieved by considering individual items of the global explanation

4. Illustrative Experiment

To demonstrate the e�ectiveness and the human-interpretable degree of the explanations

provided by PSyKE’s clustering techniques we carried out a set of experiments on the well-

known Iris data set [35]. The 150 data instances have been split into training and test sets (75%

+ 25%). The training set was then used to �t instances of ExACT and CREAM. Best values for

the depth and error threshold hyper-parameters of the explainable clustering techniques have

been estimated with OrCHiD. We used a value of 3 for the remaining parameter expressing the



(a) ExACT. (b) CREAM.

Figure 3: Comparison of the partitioning performed by ExACT and CREAM on the iris data set.

Listing 1 Classi�cation rules obtained from the ExACT clsutering on the Iris data set.

Class Virginica if PetalWidth in [1.6, 2.5] and PetalLength in [4.8, 6.9] and

SepalWidth in [2.5, 3.8] and SepalLength in [5.7, 7.9].

Class Versicolor if PetalWidth in [0.9, 2.5] and PetalLength in [3.0, 6.9] and

SepalWidth in [2.2, 3.8] and SepalLength in [4.9, 7.9].

Class Setosa otherwise.

Listing 2 Classi�cation rules obtained from the CREAM clustering on the Iris data set.

Class Versicolor if PetalWidth in [0.9, 1.7] and PetalLength in [3.0, 5.2] and

SepalWidth in [2.0, 3.4] and SepalLength in [5.0, 7.0].

Class Setosa if PetalWidth in [0.0, 0.7] and PetalLength in [0.9, 2.0] and

SepalWidth in [2.3, 4.4] and SepalLength in [4.3, 5.8].

Class Virginica otherwise.

maximum amount of identi�able clusters.

The decision boundaries for the three Iris classes are highlighted in Figure 3. The corre-

sponding explanations are listed in Listings 1 and 2 for ExACT and CREAM, respectively. It is

possible to notice that the two clustering algorithms provide very di�erent decision boundaries

and explanations, but they have comparable quality in terms of human-readability (1 rule per

distinct class) and predictive performance (classi�cation accuracy of about 93% on the test set).

Readability of explanations shown in Listings 1 and 2 could be improved by removing the

least relevant input features and keeping only the most relevant ones, i.e., the petal length and

width reported in Figure 3.

5. Conclusions

The paper delves into the pivotal role of explainable clustering algorithms within the domain

of cognitive agents, encompassing both human users and AI systems. The advantages o�ered



by these algorithms in the realm of cognitive agents are multifaceted, ranging from enhancing

interpretability and fostering trust to facilitating more e�ective decision-making processes.

Motivated by the need to foster transparency and accountability in the operations of cognitive

agents, we introduce an extension of the PSyKE framework’s design to augment its capabilities

through the incorporation of explainable clustering support. The discussion of this novel

design, coupled with real world experiments, highlights the potential to signi�cantly elevate

the performance and ethical standing of cognitive agents.

The outcomes of this research pave the way for ongoing advancements in the �eld, em-

phasising the importance of continued development and integration of explainable clustering

algorithms. By doing so, cognitive agents can be expected to evolve into more transparent,

e�ective, and ethically responsible entities. As we move forward, future e�orts will be directed

towards the practical implementation of explainable clustering algorithms within cognitive

agents, involving rigorous testing in simulated real-world scenarios.
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