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Abstract
AI has become increasingly prominent in online matchmaking and ranking systems, where individuals

are paired, ranked and recommended based on their characteristics and preferences. The need for

long-term fairness in these applications has become crucial to prevent biases and discrimination. To

address this, fairness-aware algorithms are commonly employed, incorporating fairness constraints into

the ranking process. These algorithms use metrics and models to ensure equitable treatment across

user groups. However, studying the long-term fairness properties of these approaches can be complex,

posing challenges in understanding their evolution and convergence. In this study, we propose an

abstract dynamic system as a solution to design and ensure long-term fairness in ranking systems. This

approach provides valuable insights into system behaviour, metric interactions, and overall dynamics.

By considering the ranking system as a dynamic system, we can model the evolution and interaction of

fairness metrics over time. Our proposed approach enables the analysis of system properties, trade-o�s,

and tensions that arise when optimizing multiple fairness metrics. To validate its e�ectiveness, we apply

this approach to real-world use case scenarios, demonstrating its practical applicability.
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1. Introduction

In recent years, arti�cial intelligence (AI) has gained signi�cant prominence in the area of online

matchmaking and ranking systems [1], which play a key role in diverse applications such as

Airbnb or dating platforms like Tinder and Bumble1 [2]. The objective of these systems is to

pair individuals or resources based on their respective characteristics, skills, or preferences,

expressed by a user query. These AI models can e�ectively learn from historical data, user

preferences, and other relevant features to generate personalized recommendations and op-

timize the matching of individuals or items. While these systems strive to provide relevant

and personalized recommendations, long-term fairness has emerged as a crucial aspect to

consider. Long-term fairness refers to the equitable treatment of di�erent groups of users over

extended periods, aiming to avoid systemic biases or disadvantages [3, 4]. Long-term fairness

appears to be an important feature to consider and enforce when we have multiple queries to a

recommendation system or a ranking system. Given a sensitive attribute, while the single query
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does not exhibit any polarization, multiple repeated queries can be biased toward a speci�c

value of the sensitive attribute.

The state of the art in addressing long-term fairness in online ranking systems involves the

development of fairness-aware algorithms that explicitly incorporate fairness constraints into

the ranking process [5, 6]. These algorithms leverage fairness metrics and mathematical models

to ensure equitable treatment across user groups.

Fairness metrics in ranking models encompass diverse dimensions like demographic parity,

equalized odds, or equal opportunity [7]. Each metric targets a speci�c fairness aspect, o�ering

distinct insights. Considering and integrating multiple fairness metrics is common practice to

attain a comprehensive understanding of fairness in rankings [8]. Thus, designing a theoretical

framework that accommodates multiple metrics, possibly de�ned through parameters, becomes

crucial.

Concerning algorithms, by formulating fairness constraints or objectives, the models ensure

that the algorithm not only maximizes relevance or accuracy but also adheres to the desired

fairness principles. These models often involve techniques from optimization, such as con-

strained optimization or multi-objective optimization, to balance fairness considerations with

other objectives. One common approach is to introduce fairness constraints that enforce equal

treatment or equal opportunity across di�erent groups [4]. These constraints aim to ensure

that the ranking algorithm does not favour or discriminate against speci�c demographic groups

based on protected attributes such as gender, race, or age. By incorporating these constraints,

the algorithm is encouraged to produce rankings that are fair and unbiased. Regularization

techniques, such as fairness regularization, can also be employed to balance fairness considera-

tions with other objectives [9], such as relevance or accuracy. Fairness regularization involves

adding penalty terms to the optimization objective that explicitly encourage fair behaviour. The

regularization terms act as a form of control, nudging the algorithm towards producing fair

rankings while still optimizing for other desired properties.

Considering the factors mentioned above and given the complexities associated with studying

the evolution and convergence of ranking systems, particularly when dealing with complex

algorithms in existing state-of-the-art approaches, this paper proposes a novel solution. The

main contribution of this paper is the formalization of long-term fairness as an abstract

dynamic system, to model the evolution and interaction of fairness metrics over time.

This formalization enables a systematic analysis of system properties like stability, equi-

librium, and convergence. It also facilitates the identi�cation of critical points or attractors.

Furthermore, it allows for the examination of how system changes, such as algorithm updates or

user preference shifts, in�uence long-term fairness. Additionally, this formalization enables the

exploration of trade-o�s and tensions when optimizing multiple fairness metrics concurrently.

It provides insights into how improvements in one metric may impact others and reveal the

complex relationships between them. Through this approach, a deeper understanding of the

dynamics between contrasting fairness metrics can be achieved, helping to identify potential

synergies or con�icts among them.

It is important to note that the abstract dynamic system for long-term fairness is intentionally

left abstract to accommodate customization based on speci�c case characteristics. Once the

dynamic system parameters are selected, the abstract dynamic system can be tailored to the

speci�c case under investigation. Experiments can then be conducted to observe system



behaviour and evaluate the e�ectiveness of di�erent approaches in achieving fairness goals.

This formalization allows for better control and �ne-tuning of each component of the system.

The paper is organized as follows. Section 2 introduces FAiRDAS – Fairness-Aware Ranking as

Dynamic Abstract System – and presents its mathematical foundation. The dynamic framework

is explained in detail, along with the process of grounding it. Next, an empirical evaluation

is conducted in 3, grounding the framework in the motivating example described above. The

instantiation of the framework is evaluated, demonstrating the e�ectiveness of the proposed

approach. Finally, in 4, concluding remarks are provided, along with a discussion on future

works.

2. FAiRDAS

In this section, we present the problem formulation for the framework (Subsection 2.1). The

main objective is to develop a comprehensive understanding of the problem at hand and establish

a clear foundation for our proposed solution. Then, the FAiRDAS abstract dynamic system is

introduced in Subsection 2.2. The main idea behind the work revolves around conceptualising

long-term fairness as a dynamic system, allowing us to de�ne the ideal behaviour and potentially

conduct system property analysis. By mapping fairness to this abstract level, we establish a

framework for understanding the desired dynamics of the system. After the de�nition of the

dynamic system, we transition from the abstract level to the practical level by implementing

concrete actions within the real system (Subsection 2.3). These actions are speci�cally designed

to approximate the ideal behaviour de�ned at the abstract level. By taking tangible steps within

the real system, we aim to align its behaviour as closely as possible with the envisioned fairness

dynamics.

2.1. Problem formulation: ranking problem definition

We approach the problem of ranking a set of m resources R in response to a sequence of

incoming queries qt
∞
t=1. Our focus lies on the ranking algorithm, which can be manipulated

by adjusting a vector of parameters θt, referred to as the action vector (e.g. penalizing an

over-exposed resource). Formally, we can represent the ranking algorithm as a function:

ρ : Q×Θ → {rk}
m
k=1 (1)

whereQ is the set of possible queries, Θ is the set of possible action vectors, and {rk}
m
k=1

is the

resources rank for query qt.

At each time step t a vector of n metrics xt ∈ R
n is de�ned as:

xt = x(ρ(qt, θt)), (2)

where qt and θt are the query and the set of actions performed at time t, respectively; ρ(·, ·) is
the ranking function performed onR, and it is based on the given query and set of actions.



2.2. The FAiRDAS Approach

Evolution of Metrics as a Dynamic System Equation (2) de�nes how to evaluate metrics

across all resources, but it has two signi�cant limitations. First, since it considers a single query

at a time, the equation requires an aggregation mechanism in order to be used for measuring

fairness across multiple queries. Second, since our eventual goal is enforcing fairness, we are

interested in assessing how much the current action vector θt a�ects all possible incoming

queries.

We can address both issues by taking the expectation of the metrics over the query distribution

Qt at time t. This allows us to capture the average behaviour across all queries and account

for the variations in query characteristics and preferences, as well as the dependency of such

elements on time. Hence, we formalize the metric value as its expectation over the query

distribution:

x̄t = Eqt∼Qt
[x(ρ(qt, θt))] (3)

Note that Qt is not directly observable, but it can be approximated, for example by checking

the last N queries (Equation (8)).

In Equation (3), the set of actions θt is performed to approach the ideal behaviour, and depends

on the expected behaviour of the queries from the previous step:

θt+1 = φ(x̄t), (4)

where the function φ(·) represents the selection mechanism of the set of actions. At each time

step, we have direct and explicit control over the selection of the actions, so that we can actively

in�uence the ranking algorithm to adapt and improve its fairness performance over time.

By focusing just on the evolution of the metrics, we combine Equation (3) and Equation (4)

to obtain:

x̄t+1 = fφ(x̄t), (5)

where fφ(·) represents the evolution function depending on the selection mechanism φ.

Defining an Ideal System Behavior The ultimate objective is to evolve the system in such

a way that it ensures the pre-de�ned metrics remain below a vector of user-de�ned thresholds

µ ∈ R
n.

The metrics of interest are application dependant and may include fairness indicators as well

as other metrics. For example, the application domain may require fairness metrics as well as

performance metrics to guarantee both system’s fairness and predictive performance within an

acceptable range.

By setting a threshold for each metric, the user establishes boundaries that the system should

not surpass. For fairness metrics, the threshold represents the maximum limit beyond which

the system would be considered unfair. On the other hand, for accuracy metrics, the threshold

represents the maximum acceptable level of error in the prediction.



It is worth mentioning that metrics can be contrasting or even con�icting – like in the

case of fairness and accuracy. In such case cases, it may not be possible to satisfy all of the

thresholds simultaneously. For example, improving fairness metrics might result in a decrease in

accuracy, or vice versa. In such scenarios, it becomes essential to strike a balance and determine

a satisfactory compromise that aligns with the desired objectives and priorities.

Finding this trade-o� involves carefully considering the relative importance of each metric

and making informed decisions based on the context and requirements of the system. The

most immediate outcome of this process is the de�nition of the thresholds, but in some cases it

might be usefule to rescale di�erent metrics to re�ect their relative importance. At this stage,

we model the whole process in a abstract fashion, by treating the thresholds as parameters and

by viewing any rescaling operation as part of the de�nition of the metrics themselves.

Accordingly, to these considerations, a disarable discrete dynamical system that ensures the

user objectives can be described as follows:

x̄t+1 = Amin(0, x̄t − µ) + x̄t, (6)

where A is a n× n diagonal and positive de�nite matrix, and due to result from the theory of

discrete, linear, dynamic systems µ represents the upper bound for the set of �xed points in the

system. By de�ning A and µ, we establish a framework that guides the evolution of the system

towards achieving fairness objectives.

Based on the choice of A, the expected behaviour of the system de�ned in Equation (6) can

be schematized via the following three situations: (a) with eigenvalues close to zero, the system

converges slowly, making softer and less drastic choices; (b) with eigenvalues close to 1, the
behaviour is highly rapid, indicating more aggressive choices; (c) with eigenvalues greater than

1, the theoretical dynamic system oscillates. However, since the minimum limits the oscillations,

a stable behaviour is anticipated. We report the theoretical results in Appendix 4.1.

Approximating the Ideal Behavior The behaviour of the system, i.e., the metrics evolution

over time, described in Equation (5) may undergo changes over time due to two main factors:

i) the drift in the query distribution (change or shift in the characteristics, preferences, or

distribution of the incoming queries over time), and ii) the set of actions taken to enforce

fairness. While the �rst factor is beyond our control this is not true for the second factor. We

can leverage this control to shape the system’s evolution and approximate the desired behaviour

outlined in Equation (6), which represents the ideal dynamics of the system.

Let’s de�ne the distance between the approximate and the ideal system evolution as:

L(x̄t) = ‖f(x̄t)−Amin(0, x̄t − µ)− x̄t‖
2
2. (7)

Formally, we want to approximate the evolution of the system in Equation (6) by �nding

the set of actions θt to perform at time step t in order to minimize the distance to the ideal

behaviour; thus, we have to solve:

argmin
θt

L(x̄t). (8)



The cost function of the system, represented by Equation (8), can be tailored to the speci�c

scenario being addressed.

We can then expand x̄t according to its de�nition, and we can rely on a sample approximation

for the expectation. For example, we can assume that the distribution drift over time is limited

and use as sample the queries from the last N time steps; when N = 0, our approximation is

not impacted by drift e�ects, but it is more a�ected by sampling noise (i.e. we treat a single

query as representative for the full distribution); increasing N allows to adjust this trade-o�.

With this strategy, Equation (8) can be customised as follows2:

argmin
θt

{

L(xt) +
β

N

N
∑

i=1

L(xtt−i)

}

, with xtt−i = x(ρ(qt−i, θt)). (9)

The rationale behind the semantics of Equation (9) can be summarized with the following

intuition: to limit the impact of drift-e�ects, we consider only one query per time step, and we

approximate the expectation in Equation (3) by considering the N previous queries before qt
(current query arrived at time t) and treat them as if they arrived at time t. Therefore, during

the optimization phase, the cost function is computed by considering the impact of the actions

not only on qt but also on the N previous queries (Equation (9)). However, since the previous

queries are passed, their contribution is weighted with a parameter β ∈ [0, 1], to lower their

importance. It is worth mentioning that by changing N we can also control the computational

e�ciency of the system.

2.3. FAiRDAS grounding

The proposed approach is applicable to a wide range of scenarios where the objective is to

promote fairness in the outcomes of user queries over time. To tailor the abstract framework

FAiRDAS to a speci�c application all the system parameters should be selected. Speci�cally, the

abstract system incorporates the following parameters and actions to be grounded:

• Speci�c metrics of interest, along with the thresholds and rescaling factors, de�nition. This

involves the selection of metrics relevant to assessing fairness, as well as other metrics of

interest, including those related to performance. Appropriate rescaling factors are applied

to ensure comparability among these metrics. It is essential to include weights in the

metric de�nition to indicate the importance of each metric within the speci�c scenario.

• Ideal dynamical system de�nition. The matrix of the dynamic system and the threshold

vector are de�ned to represent the desired behaviour of the system. This involves de�ning

the matrix A and the threshold vector µ as depicted in Equation (6).

• Actions for achieving fairness de�nition. Potential actions or interventions are identi�ed

to promote fairness within the system.

• Cost function de�nition. A cost function is de�ned to quantify the trade-o�s or penal-

ties associated with di�erent outcomes or actions. This is the function that guides the

2The cost function in Equation (9) represents one possible approximation of the query expectation; for example,

other distance metrics can be de�ned depending on the application, and the factor β can be time-dependent instead

of constant to weight each past contribution xt−i di�erently.



optimization process, taking into account the approximation for the expectation of the

fairness metrics as outlined in equation 3.

• Optimization method de�nition. Select the appropriate method to solve the optimization

problem, considering factors such as computational e�ciency, accuracy, and scalability.

By following these steps, we can customize FAiRDAS to a speci�c application or domain,

allowing for the e�ective enforcement of fairness or other metrics over time in the outcomes of

user queries. The �exibility and adaptability of our approach enable its application in various

contexts, providing a framework for addressing fairness concerns in query-based systems. The

parameterization of the system in FAiRDAS empowers us to navigate the complexities and

intricacies of rankingswhile ensuring fairness. It o�ers a versatile framework that accommodates

the inherent non-smoothness of rankings, enabling e�ective and customizable handling of

fairness considerations.

3. Empirical Evaluation

3.1. Case Study

In this section, we present a real-world case study 3 that focuses on a web platform providing a

matchmaking service for AI experts. The platform aims to bridge the gap between customers

(such as companies or other entities) seeking AI expertise to solve speci�c problems. Users

of the platform describe the issues they need to address, along with any desired expertise.

The platform then generates a ranked list of AI experts that best align with the user’s query,

providing them with a tailored response. The ranking process takes into consideration the

relevance and suitability of the experts’ expertise to the user’s speci�c scenario. This ensures

an optimal match between the user’s requirements and the available AI experts.

Within this context, fairness is a crucial aspect that is given due consideration. Speci�cally, the

sensitive attribute of country is acknowledged, prompting the development of fair algorithms to

address this concern. In generating the ranked list of AI experts, our goal is to ensure fairness

with respect to the country attribute. This entails considering the expertise and quali�cations of

the AI experts while giving proper weight to their skills in relevant AI sub�elds. Additionally,

measures are implemented to mitigate any potential biases associated with the country attribute.

These measures ensure that experts from all countries have an equal opportunity to be included

in the ranked list. Formally, let each resource be characterized by two score vectors: sL ∈ R
l

and sC ∈ R
c. The vector sL captures the expertise of AI experts across l sub�elds of AI. Each

component of sL represents the skill level of the expert in a speci�c sub�eld, and its value is

con�ned within the range of [−1, 1]. On the other hand, sC represents the country of the AI

expert, encoded in a one-hot format, and serves as a protected attribute within our use case to

guarantee fair nationality distribution. The queries are described by the same vectors of scores

which re�ect the user’s requirements. It is important to note that the query includes both AI

sub�elds (l) and preferred country (c) in R
l+c due to the speci�c nature of the case at hand.

In this scenario, when selecting AI experts for a particular use case, it might be necessary to

specify the language in which we can communicate with the expert. However, in typical cases,

3StairwAI Project.

https://stairwai.nws.cs.unibo.it/


the sensitive attribute cannot be directly provided by the user. It is crucial to understand that

this particularity does not impact the mathematical foundation of the model; on the contrary, it

shows its �exibility.

Dataset Generation For the experimentation phase, synthetic data was generated to facilitate

better control over the level of an imbalance concerning the country attribute, allowing for the

manipulation of bias levels. To achieve this, the synthetic data was designed to represent various

countries in a controlled manner. By adjusting the parameters of the data generation process,

the desired level of imbalance or bias in terms of country representation could be de�ned.

We generate three datasets for the experimental valuation, each consisting of 40 resources
and 100 queries. Each data sample is de�ned by 9 AI sub�elds and belongs to one of 5 countries.
The score vectors of the AI sub�elds are sampled from a uniform distribution, while the country

vectors are sampled from a categorical distribution with p1, . . . , p5 where the event probabilities

were normalized. The synthetic datasets di�er in the event probabilities of the resources country

distribution to represent three levels of bias. In Figure 1, we show the scores distribution of the

generated data. Figure 1(a) represents the distribution of the query scores, which is the same

for all three datasets. The resources of the �rst dataset are uniformly distributed among the 5
classes, i.e., pi = 0.2 ∀ i (Figure 1(b)); we refer to this dataset as Balanced. In the second dataset,

hereinafter Mild Unbalanced dataset, we introduce a bias towards the attribute Country3 by

setting p3 = 0.4 (Figure 1(c)), and in the third dataset, named Strong Unbalanced, we increase

the bias with p3 = 0.8 (Figure 1(d)).

Ranking Algorithm Given an incoming query q ∈ R
l+c, the ranking algorithm computes

the cosine similarity between q and each resource vector; the resources are ranked based on the

resulting scores.

Metrics of Interest In this case study, we are interested in enforcing fairness over the

protected attribute while preserving the ranking accuracy. As fairness metric we use the

Disparate Impact Discrimination Index [10]. Given a sample {xi, yi}
n
i=1 including values for

a protected attribute x and a continuous target value y, the Disparate Impact Discrimination

Index is de�ned as:

DIDI(x, y) =
∑

v∈X

∣

∣

∣

∣

∣

∑n
i=1

yiI(xi = v)
∑n

i=1
I(xi = v)

−
1

n

n
∑

i=1

yi

∣

∣

∣

∣

∣

(10)

where X is the domain of x and I(ψ) is the indicator function for the logical formula ψ.

To quantify the ranking accuracy we measure the cosine distance dcos between the true rank

vector r resulting from applying the ranking algorithm with no actions vector, and the rank

vector rθ computed by the ranking algorithm subject to an actions vector θ.

dcos(r, rθ) = 1−
r · rθ

|| r || || rθ ||
(11)
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Figure 1: Query and resource scores distribution in the three datasets. The protected attribute is in bold.

The query scores distribution common to all three datasets (a); while the resource scores distribution

varies among Balanced (b), Mild Unbalanced (c) and Strong Unbalanced (d) datasets.

Ideal Dynamical System We adopt the dynamical system in Equation (6) with A a 2× 2
diagonal matrix with eigenvalues equal to 0.54, and we vary the threshold components µi in

the interval [0, 1] to force di�erent behaviours.

Cost Function As cost function, we adopt the L2-norm de�ned in Equation (7), and we

approximate the metrics expectation by considering N = 5 previous queries and weighting

their contribution with β = 0.2.

Set of Actions Our set of actions applies directly to the rank returned by the ranking algorithm:

each resource inR can be either put at the bottom of the rank or kept in the current position

based on the value of a binary variable. In particular, we associate a binary variable bi to each

resource indicating whether the i− th resource should (bi = 1) or should not (bi = 0) be placed
at the bottom of the ranking list. The optimizer seeks to determine which resources to place

at the bottom by exploring the space {0, 1}m, where m represents the number of resources.

In other words, the algorithm searches for the optimal assignment of them binary variables

representing the action “place at the bottom”.

4The eigenvalues of 0.5 were selected as they fall within the stable range [0,2] discussed in the previous section.

Further studies will be dedicated to �nding the optimal eigenvalues for the speci�c scenario at hand.



Optimization Method To solve the optimization problem we use a random walk to search in

the hyperspaceΩ ⊆ {0, 1}m. Starting with a random generated point the algorithm searches for

a better solution among a set of candidates recursively. The new candidate points are generated

by �ipping each component of the current best solution with a decreasing probability p.
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Figure 2: DIDI and dcos values for the three datasets without performing any action (a) and by setting

the threshold component for the DIDI to be equal to 0 (b).

3.2. Experiments

The presented case study was applied to three datasets, and we varied the threshold components

µi to enforce di�erent behaviours
5. To establish a reference benchmark, we computed theDIDI

and dcos metrics for each query in the three datasets without taking any further action. Figure

2(a) illustrates the resulting curves, while Table 1 summarizes the mean values of the two metrics

across all queries. As expected, the Strong Unbalanced dataset exhibited a higher average DIDI
compared to the Balanced and Mild Unbalanced datasets. Furthermore, the fairness metrics

displayed a more unstable behaviour in the Strong Unbalanced dataset when compared to the

5The source code to generate the datasets and reproduce the experiments is available at https://github.com/EleMisi/

FAiRDAS under MIT license.

https://github.com/EleMisi/FAiRDAS
https://github.com/EleMisi/FAiRDAS


Table 1

Mean of the two metrics computed over the incoming of queries for each of the three datasets. Column

3, shows the mean of DIDI and dcos computed without performing any action on the rank. Columns

4-7 refer to the experiments with four di�erent thresholds.

Thresholds ({DIDI,dcos})

Dataset Metrics {−,−} {0.0, 1.0} {0.5, 0.2} {0.4, 0.2} {0.1, 0.1}

Balanced
DIDI 0.322 0.256 0.322 0.286 0.256
dcos 0.0 0.162 0.0 0.098 0.162

Mild Unbalanced
DIDI 0.341 0.312 0.341 0.304 0.312
dcos 0.0 0.186 0.0 0.129 0.186

Strong Unbalanced
DIDI 0.516 0.431 0.424 0.454 0.431
dcos 0.0 0.158 0.162 0.177 0.158

other datasets.

As an initial step, we aim to determine the minimum average DIDI achievable by employing

FAiRDAS. For this purpose, we set the threshold component for DIDI to 0, while keeping the
component for ranking accuracy at 1. By doing so, we allow FAiRDAS to prioritize the reduction

ofDIDIwithout imposing any constraint on the rank accuracy metrics. Notice that the opposite

setting, where we want to maximize the rank accuracy without any requirements on the fairness

metrics, is equivalent to not taking any actions, i.e., it is equivalent to the reference benchmark

(Figure 2(a)). Figure 2(b) visualizes the resulting curves. As anticipated, applying FAiRDAS with

µ = {0, 1} leads to an increase in dcos for all datasets, while the DIDI decreases and exhibits a

more stable behaviour.

In Figure 3, we present a comparison of the impact of FAiRDAS when applying three di�erent

thresholds. Speci�cally, in Figure 3(a), we depict the scenario where we set the thresholds for

DIDI and dcos as 0.5 and 0.2, respectively 6. Since these thresholds exceed the mean values

of DIDI and dcos for the Balanced and Mild Unbalanced datasets, FAiRDAS does not take any

action on incoming queries, and the rank quality remains una�ected. Conversely, in the case of

the Strong Unbalanced dataset, the rank quality declines as FAiRDAS must implement measures

to reduce DIDI.
In Figure 3(b), we maintain a constant threshold for dcos while reducing the threshold for

DIDI to 0.4. This new threshold is now lower than the average value of DIDI achieved by

applying FAiRDAS in the initial experiment on the Strong Unbalanced dataset (Figure 2(b),

red line). As a result, the system reaches an equilibrium above the threshold for the Strong

Unbalanced dataset. Furthermore, FAiRDAS needs to take actions on the incoming queries of

the Balanced and Mild Unbalanced datasets to ensure that the resulting rankings do not violate

the fairness threshold. Consequently, the value of dcos is a�ected in all the datasets.

In our �nal experiment, we examine the behavior of the system when faced with unattainable

thresholds—both threshold components set to 0.1. As expected, the system is unable to meet

6It is important to note that these thresholds represent the maximum allowed values for identifying unfair behaviour

and the maximum acceptable error in accuracy, respectively.
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Figure 3: DIDI and dcos values for the three datasets by applying three di�erent vectors of thresholds.

the requirements but instead settles into an equilibrium state near the desired thresholds. The

average DIDI values exhibited by the system align with the initial bias present in the three

datasets: Strong Unbalanced being the most biased, while Balanced and Mild Unbalanced are



closer in terms of DIDI. However, as FAiRDAS takes actions on the incoming queries to

approach the desired fairness threshold, the quality of rankings deteriorates for all the datasets.

4. Conclusion

In this study, we proposed a novel approach for addressing long-term fairness in matchmaking

and ranking systems by formalizing it as an abstract dynamic system. Bymodelling the evolution

and interaction of fairness metrics over time, valuable insights into system behaviour, metrics

interactions, and overall dynamics can be gained. This formalization enables a systematic

analysis of system properties, such as stability, equilibrium, and convergence, and facilitates the

exploration of trade-o�s and tensions when optimizing multiple fairness metrics simultaneously.

One of the advantages of the proposed abstract dynamic system is its �exibility and customiz-

ability. It can be tailored to speci�c cases, allowing for targeted analysis and experimentation.

Di�erent metrics – including both fairness and performance metrics – can be considered si-

multaneously and easily parameterized within the system. Furthermore, the study includes a

discussion and evaluation of the proposed approach in a real-world use case. By grounding the

framework in a practical scenario, the e�ectiveness and applicability of the approach can be

demonstrated, providing valuable insights and practical guidance for implementing fair ranking

systems.

Overall, this study has the potential to advance the �eld of fairness in matchmaking and

ranking systems.

Future Research Directions The present work represents a preliminary exploration of the

topic, and there are several avenues for further research. One key area of focus will be the

optimal selection of eigenvalues for the matrix A. It is essential to conduct in-depth studies to

determine the most e�ective approach for selecting these eigenvalues and their impact on the

overall system dynamics.

Additionally, a more comprehensive investigation of the system is necessary in terms of bal-

ancing con�icting fairness metrics and identifying any unreachable points. It will be interesting

to explore methods for a priori identi�cation of unreachable thresholds and visually analyze the

system’s behavior using phase diagrams. This analysis can provide insights into the dynamics

and trade-o�s between di�erent fairness metrics.

Furthermore, an important aspect to study is how to choose the thresholds for di�erent

metrics, select their weights, and perform rescaling to make them comparable. Investigating

methods for threshold determination, weight selection, and normalization techniques will

contribute to re�ning the fairness-aware ranking system and enhancing its e�ectiveness.

Another important direction for future research is the integration of contextual fairness in

the ranking systems. User-centric fairness is also an area that warrants further investigation.

Involving users in shaping the fairness objectives and constraints of ranking systems can lead

to more personalized and user-centric fairness approaches. Future studies should explore

methods for actively engaging users in the fairness design process, allowing them to de�ne their

fairness preferences and customize the ranking system accordingly. Speci�cally, we will work



on adapting the system in real-time based on user feedback and interactions, going beyond

basic fairness constraints.

Transparency and explainability are crucial aspects of fairness in ranking systems. Future

research e�orts should be dedicated to enhancing the transparency and interpretability of

ranking algorithms. Developing methods to explain the ranking decisions to users and providing

them with insights into the fairness criteria employed can foster trust and understanding.

Transparency and explainability also enable users to hold the ranking system accountable for

its fairness outcomes.

Long-term impact assessment is another important research direction. Evaluating the e�ec-

tiveness of fairness-aware ranking systems over extended periods is critical to ensure equitable

outcomes and minimize unintended consequences. Future studies should assess how these

systems a�ect various stakeholders, including users, content providers, and platform operators,

and examine any long-term biases or disparities that may arise.

Furthermore, since we are operating within an experimental framework, a potential area

for future investigation would involve identifying the most equitable ML algorithm based on

the de�ned constraints (boundaries). Taking it a step further, examining the boundaries using

diverse, polarized data sets would provide insights into the threshold at which a particular

algorithm becomes ine�ective (algorithm breaking point).

By addressing these future research directions, we can advance the �eld of fairness in rank-

ing systems, mitigate biases and discrimination, and ensure more equitable and transparent

outcomes for users and stakeholders alike.
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Appendix

4.1. Stability Analysis

Let’s consider a discrete-time linear system with state equation:

x(k + 1) =Mx(k) +Bu(k), (12)

withM and B real-valued n × n matrices. Given λi ∈ R the eigenvalues ofM , it is known

that:

if |λi| < 1 ∀i =⇒ asymptotic stability,

if |λi| > 1 for some i =⇒ unstability.

In the dynamic system de�ned in Equation (6), we haveM = I− A; thus, assuming A to be

diagonal and positive de�nite, and denoting λAi ∈ R
+ the eigenvalues of A, we have that:

if 0 < λAi < 2 ∀i =⇒ asymptotic stability,

if λAi > 2 for some i =⇒ instability.
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